State feedback for overdetermined 2D systems: Pole placement for bundle maps over an algebraic curve.

Liran Shaul

Department of Mathematics
Ben-Gurion University of the Negev

Advisor: Prof. Victor Vinnikov

29 June 2009

Here is the plan of my lecture:

1. Definition of Operator vessel
2. Transfer functions of operator vessels
3. The discriminant curve of a vessel
4. State feedback and the pole placement problem
5. The solution
6. Conclusions

The definition of operator vessels

We start with an Overdetermined 2D continuous-time time-invariant linear i/s/o system Σ

$$
\left\{\begin{array}{c}
\frac{\partial x}{\partial t_{1}}\left(t_{1}, t_{2}\right)=A_{1} x\left(t_{1}, t_{2}\right)+B_{1} u\left(t_{1}, t_{2}\right) \\
\frac{\partial x}{\partial t_{2}}\left(t_{1}, t_{2}\right)=A_{2} x\left(t_{1}, t_{2}\right)+B_{2} u\left(t_{1}, t_{2}\right) \\
y\left(t_{1}, t_{2}\right)=C x\left(t_{1}, t_{2}\right)+D u\left(t_{1}, t_{2}\right)
\end{array}\right.
$$

$u\left(t_{1}, t_{2}\right) \in \mathcal{E}$ - input space. $x\left(t_{1}, t_{2}\right) \in \mathcal{H}$ - state space. $y\left(t_{1}, t_{2}\right) \in \mathcal{E}_{*}$ - output space. All spaces are finite dimensional over the complex numbers. $A_{1}, A_{2}: \mathcal{H} \rightarrow \mathcal{H} . B_{1}, B_{2}: \mathcal{E} \rightarrow \mathcal{H} . C: \mathcal{H} \rightarrow \mathcal{E}_{*} . D: \mathcal{E} \rightarrow \mathcal{E}_{*}$.

The definition of operator vessels - A1

Assuming x is smooth, we have $\frac{\partial}{\partial t_{1}} \frac{\partial x}{t_{2}}=\frac{\partial}{\partial t_{2}} \frac{\partial x}{t_{1}}$, so that from Σ, we have:

$$
A_{1} \frac{\partial x}{\partial t_{2}}+B_{1} \frac{\partial u}{\partial t_{2}}=A_{2} \frac{\partial x}{\partial t_{1}}+B_{2} \frac{\partial u}{\partial t_{1}}
$$

Replacing $\frac{\partial x}{\partial t_{i}}$ with the terms in Σ, we obtain

$$
\begin{equation*}
A_{1}\left[A_{2} x+B_{2} u\right]+B_{1} \frac{\partial u}{\partial t_{2}}=A_{2}\left[A_{1} x+B_{1} u\right]+B_{2} \frac{\partial u}{\partial t_{1}} \tag{1.1}
\end{equation*}
$$

Setting $u=0$, we see that we must have $A_{1} A_{2}=A_{2} A_{1}$. Hence, we require our systems to satisfy this compatibility condition:

$$
\text { (A1) } \quad A_{1} A_{2}=A_{2} A_{1}
$$

The definition of operator vessels - A2

Under the assumption (A1), (1.1) becomes

$$
\begin{equation*}
B_{2} \frac{\partial u}{\partial t_{1}}-B_{1} \frac{\partial u}{\partial t_{2}}+\left(A_{2} B_{1}-A_{1} B_{2}\right) u=0 \tag{1.2}
\end{equation*}
$$

We now choose an auxiliary Hilbert space $\tilde{\mathcal{E}}$ and a factorization

$$
\begin{equation*}
B_{2}=\tilde{B} \sigma_{2} \quad B_{1}=\tilde{B} \sigma_{1} \quad A_{2} B_{1}-A_{1} B_{2}=\tilde{B} \gamma \tag{1.3}
\end{equation*}
$$

where

$$
\tilde{B}: \tilde{\mathcal{E}} \rightarrow \mathcal{H} \quad \sigma_{1}: \mathcal{E} \rightarrow \tilde{\mathcal{E}} \quad \sigma_{2}: \mathcal{E} \rightarrow \tilde{\mathcal{E}} \quad \gamma: \mathcal{E} \rightarrow \tilde{\mathcal{E}}
$$

In terms of this factorization, (1.3) becomes our second compatibility condition:

$$
\text { (A2) } \quad A_{2} \tilde{B} \sigma_{1}-A_{1} \tilde{B} \sigma_{2}=\tilde{B} \gamma
$$

The definition of operator vessels

Using this factorization, our equation (1.2) becomes

$$
\begin{equation*}
\tilde{B}\left[\sigma_{2} \frac{\partial}{\partial t_{1}}-\sigma_{1} \frac{\partial}{\partial t_{2}}+\gamma\right] u\left(t_{1}, t_{2}\right)=0 \tag{1.4}
\end{equation*}
$$

A sufficient condition for this to hold is

$$
\begin{equation*}
\left[\sigma_{2} \frac{\partial}{\partial t_{1}}-\sigma_{1} \frac{\partial}{\partial t_{2}}+\gamma\right] u\left(t_{1}, t_{2}\right)=0 \tag{1.5}
\end{equation*}
$$

The definition of operator vessels

Further analysis of this system leads us to the notion of a Livsic-Kravitsky commutative operator vessel:
An operator vessel \mathcal{B} is a collection of operators and spaces

$$
\mathcal{B}=\left(A_{1}, A_{2}, \tilde{B}, C, D, \tilde{D}, \sigma_{1}, \sigma_{2}, \gamma, \sigma_{1 *}, \sigma_{2 *}, \gamma_{*} ; \mathcal{H}, \mathcal{E}, \mathcal{E}_{*}, \tilde{\mathcal{E}}, \tilde{\mathcal{E}}_{*}\right)
$$

satisfying:

$$
\begin{array}{cc}
(A 1) & A_{1} A_{2}=A_{2} A_{1} \\
(A 2) & A_{2} \tilde{B} \sigma_{1}-A_{1} \tilde{B} \sigma_{2}=\tilde{B} \gamma \\
(A 3) & \sigma_{2 *} C A_{1}-\sigma_{1 *} C A_{2}+\gamma_{*} C=0 \\
(A 4) & \sigma_{1 *} D=\tilde{D} \sigma_{1} \quad \sigma_{2 *} D=\tilde{D} \sigma_{2} \tag{A4}\\
& \gamma_{*} D=\tilde{D} \gamma+\sigma_{1 *} C \tilde{B} \sigma_{2}-\sigma_{2 *} C \tilde{B} \sigma_{1}
\end{array}
$$

The definition of operator vessels

we also require the functions u to satisfy the following PDEs

$$
\left[\sigma_{2} \frac{\partial}{\partial t_{1}}-\sigma_{1} \frac{\partial}{\partial t_{2}}+\gamma\right] u\left(t_{1}, t_{2}\right)=0
$$

which implies that y satisfies

$$
\left[\sigma_{2 *} \frac{\partial}{\partial t_{1}}-\sigma_{1 *} \frac{\partial}{\partial t_{2}}+\gamma_{*}\right] y\left(t_{1}, t_{2}\right)=0
$$

The system of equations associated to a vessel \mathcal{B} is

$$
\left\{\begin{array}{c}
\frac{\partial x}{\partial t_{1}}\left(t_{1}, t_{2}\right)=A_{1} x\left(t_{1}, t_{2}\right)+\tilde{B} \sigma_{1} u\left(t_{1}, t_{2}\right) \\
\frac{\partial x}{\partial t_{2}}\left(t_{1}, t_{2}\right)=A_{2} x\left(t_{1}, t_{2}\right)+\tilde{B} \sigma_{2} u\left(t_{1}, t_{2}\right) \\
y\left(t_{1}, t_{2}\right)=C x\left(t_{1}, t_{2}\right)+D u\left(t_{1}, t_{2}\right)
\end{array}\right.
$$

Transfer functions of operator vessels

We construct the transfer function of a vessel \mathcal{B} using frequency domain analysis. Suppose

$$
\begin{aligned}
& u\left(t_{1}, t_{2}\right)=e^{\lambda_{1} t_{1}+\lambda_{2} t_{2}} u_{0} \\
& x\left(t_{1}, t_{2}\right)=e^{\lambda_{1} t_{1}+\lambda_{2} t_{2}} x_{0}
\end{aligned}
$$

and

$$
y\left(t_{1}, t_{2}\right)=e^{\lambda_{1} t_{1}+\lambda_{2} t_{2}} y_{0}
$$

for some $u_{0} \in \mathcal{E}, x_{0} \in \mathcal{H}$ and $y_{0} \in \mathcal{E}_{*}$.

Transfer functions of operator vessels

From the PDE satisfied by the input function u, we obtain an algebraic equation

$$
\left[\lambda_{1} \sigma_{2}-\lambda_{2} \sigma_{1}+\gamma\right] u_{0}=0
$$

and similarly, for the output

$$
\left[\lambda_{1} \sigma_{2 *}-\lambda_{2} \sigma_{1 *}+\gamma_{*}\right] y_{0}=0
$$

Plugging u, x and y into Σ, we obtain the following system of equations

$$
\begin{gathered}
\lambda_{1} x_{0}=A_{1} x_{0}+\tilde{B} \sigma_{1} u_{0} \\
\lambda_{2} x_{0}=A_{2} x_{0}+\tilde{B} \sigma_{2} u_{0} \\
y_{0}=C x_{0}+D u_{0}
\end{gathered}
$$

Transfer functions of operator vessels

To solve this system (i.e, to find y_{0} in terms of u_{0}), we multiply the first equation by $\xi_{1} \in \mathbb{C}$, the second by $\xi_{2} \in \mathbb{C}$. Adding the resulting equations, we obtain

$$
\left(\xi_{1} \lambda_{1}+\xi_{2} \lambda_{2}\right) x_{0}=\left(\xi_{1} A_{1}+\xi_{2} A_{2}\right) x_{0}+\tilde{B}\left(\xi_{1} \sigma_{1}+\xi_{2} \sigma_{2}\right) u_{0}
$$

Recall that the joint spectrum of a pair of commuting square matrices $A, B \in M_{n}(\mathbb{C})$, denoted by $\operatorname{Spec}(A, B)$, is the set of pairs (λ, μ) such that $\exists 0 \neq v \in \mathbb{C}^{n}$, with $A v=\lambda v$ and $B v=\mu v$.

Lemma 2.1. Given $A, B \in M_{n}(\mathbb{C})$, such that $A B=B A$, there exist $\xi_{1}, \xi_{2} \in \mathbb{C}$ such that $\xi_{1} A+\xi_{2} B$ is invertible, if and only if $(0,0) \notin \operatorname{Spec}(A, B)$.

Hence, assuming $\left(\lambda_{1}, \lambda_{2}\right) \notin \operatorname{Spec}\left(A_{1}, A_{2}\right)$, we may choose ξ_{1}, ξ_{2} such that $\xi_{1}\left(\lambda_{1} I-A_{1}\right)+\xi_{2}\left(\lambda_{2} I-A_{2}\right)$ is invertible, so that $x_{0}=\left(\xi_{1}\left(\lambda_{1} I-A_{1}\right)+\xi_{2}\left(\lambda_{2} I-A_{2}\right)\right)^{-1} \tilde{B}\left(\xi_{1} \sigma_{1}+\xi_{2} \sigma_{2}\right) u_{0}$.

Transfer functions of operator vessels

This implies that
$y_{0}=\left(D+C\left(\xi_{1}\left(\lambda_{1} I-A_{1}\right)+\xi_{2}\left(\lambda_{2} I-A_{2}\right)\right)^{-1} \tilde{B}\left(\xi_{1} \sigma_{1}+\xi_{2} \sigma_{2}\right)\right) u_{0}$. Hence, the transfer function of a vessel \mathcal{B} is given by

$$
S_{\mathcal{B}}\left(\lambda_{1}, \lambda_{2}\right)=D+C\left(\xi_{1}\left(\lambda_{1} I-A_{1}\right)+\xi_{2}\left(\lambda_{2} I-A_{2}\right)\right)^{-1} \tilde{B}\left(\xi_{1} \sigma_{1}+\xi_{2} \sigma_{2}\right)
$$

Note that for a u_{0} with u admissible input signal, this is independent of ξ_{1}, ξ_{2}.

Controllability, observability and minimal vessels

Let \mathcal{C} denote the controllable subspace, i.e the space of all vectors $h \in \mathcal{H}$ such that there exist an admissible input u for which the state function x satisfies, $x(0,0)=0$, and $x\left(t_{1}, t_{2}\right)=h$ for some $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$. A vessel \mathcal{B} is called controllable if $\mathcal{C}=\mathcal{H}$.
Similarly, let \mathcal{O}^{\perp} denote the unobservable subspace, i.e the subspace of all vectors $h \in \mathcal{H}$ such that the unique solution (u, x, y) of the system of equations associated to the vessel, with $x(0,0)=h$, and $u \equiv 0$ has $y \equiv 0$. A vessel \mathcal{B} is called observable if $\mathcal{O}^{\perp}=0$.
A vessel is called minimal if it is both controllable and observable. In the sequel, all vessels are assumed to be minimal.

The discriminant curve of a vessel

Assume now that $\operatorname{dim} \mathcal{E}=\operatorname{dim} \tilde{\mathcal{E}}$, and $\operatorname{dim} \mathcal{E}_{*}=\operatorname{dim} \tilde{\mathcal{E}}_{*}$. We have seen that a frequency function u satisfies the compatibility PDE if and only if $\left(\lambda_{1} \sigma_{2}-\lambda_{2} \sigma_{1}+\gamma\right) u_{0}=0$. We define $E_{\text {in }}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{ker}\left(\lambda_{1} \sigma_{2}-\lambda_{2} \sigma_{1}+\gamma\right)$ and $E_{\text {out }}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{ker}\left(\lambda_{1} \sigma_{2 *}-\lambda_{2} \sigma_{1 *}+\gamma_{*}\right)$ and also $p_{\text {in }}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{det}\left(\lambda_{1} \sigma_{2}-\lambda_{2} \sigma_{1}+\gamma\right), p_{\text {out }}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{det}\left(\lambda_{1} \sigma_{2 *}-\lambda_{2} \sigma_{1 *}+\gamma_{*}\right)$.

Theorem 3.1. (Livsic-Kravitsky): $p_{\text {in }} \equiv \lambda p_{\text {out }}$ for some $\lambda \in \mathbb{C}^{\times}$.
Let $p=p_{\text {in }}=p_{\text {out }}$.
Theorem 3.2. (Livsic-Kravitsky): The generalized Cayley-Hamilton theorem for vessels: $p\left(A_{1}, A_{2}\right)=0$.

Let $C_{0}=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{C}^{2}: p\left(\lambda_{1}, \lambda_{2}\right)=0\right\}$. The curve C_{0} (and the associated projective plane curve C) is called the discriminant curve of the vessel \mathcal{B}.

Corollary 3.3. $\operatorname{Spec}\left(A_{1}, A_{2}\right) \subseteq C$.

The discriminant curve of a vessel

The input and output bundles

In all that follows we make the following assumptions on the curve C : C is smooth, reduced, and irreducible of degree m, and intersects the line at infinity at m distinct points.

Theorem 3.4. For each $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in C$,
$\operatorname{dim} E_{\text {in }}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{dim} E_{\text {out }}\left(\lambda_{1}, \lambda_{2}\right)=1$.
It follows that $E_{\text {in }}$ and $E_{\text {out }}$ are actually line bundles over the curve C. Furthermore, our construction of the transfer function, shows that $S_{\mathcal{B}}$ is actually a bundle map. In summary, we have:

Theorem 3.5. For a vessel \mathcal{B}, the transfer function $S_{\mathcal{B}}: E_{\text {in }} \rightarrow E_{\text {out }}$ is a meromorphic bundle map, with poles $(S)=\operatorname{Spec}\left(A_{1}, A_{2}\right)$.

State feedback

We now formulate state feedback for vessels. Let \mathcal{B} be a vessel, and suppose that $F: \mathcal{H} \rightarrow \mathcal{E}$. We may form a new collection
$\mathcal{B}_{F}^{\text {Closed loop }}=\left(A_{1}+\tilde{B} \sigma_{1} F, A_{2}+\tilde{B} \sigma_{2} F, \tilde{B}, C+D F, D, \tilde{D}, \sigma_{1}, \sigma_{2}, \gamma, \sigma_{1 *}, \sigma_{2 *}, \gamma_{*}\right)$
A small calculation shows that
Proposition 4.1. The collection $\mathcal{B}_{F}^{\text {Closed loop }}$ is an operator vessel if and only if F satisfies the following 2 equations:

$$
\begin{gathered}
\sigma_{2} F A_{1}-\sigma_{1} F A_{2}+\gamma F=0 \\
\sigma_{1} F \tilde{B} \sigma_{2}-\sigma_{2} F \tilde{B} \sigma_{1}=0
\end{gathered}
$$

Such an F is called an admissible feedback for \mathcal{B}.

The pole placement problem

We may now formulate the pole placement problem for operator vessels:
Problem 4.2. Given a vessel \mathcal{B}, find an admissible feedback F such that the joint spectrum $\operatorname{Spec}\left(A_{1}+\tilde{B} \sigma_{1} F, A_{2}+\tilde{B} \sigma_{2} F\right)$ (which is equal to $\operatorname{Poles}\left(S_{\mathcal{B}_{F} \text { Closed loop }}\right)$) is a prescribed effective divisor on the discriminant curve C.

Recall that an effective divisor on a curve C is a finite formal sum $D=\sum_{p \in C} n_{p} \cdot p$ with $n_{p} \in \mathbb{N}$.

The factorization

As might be expected, it turns out that the effect of state feedback takes place in the input space. In fact, for every controllable vessel \mathcal{B} and any admissible feedback F, the transfer function of the closed loop vessel $\mathcal{B}_{F}^{\text {Closed loop }}$ factors

$$
E_{\mathrm{in}} \xrightarrow{S^{-1}} E_{\mathrm{in}} \xrightarrow{T} E_{\mathrm{out}}
$$

where T is the transfer function of the open loop vessel, and S is the transfer function of a vessel $\mathcal{B}_{F}^{\text {Controller }}$ whose construction will be explained in the sequel.

The Ball-Vinnikov realization theorem

Suppose $\sigma_{1}, \sigma_{2}, \gamma, \gamma_{*} \in M_{n}(\mathbb{C})$ are given matrices, and suppose that $\operatorname{det}\left(\lambda_{1} \sigma_{2}-\lambda_{2} \sigma_{1}+\gamma\right)=\operatorname{det}\left(\lambda_{1} \sigma_{2}-\lambda_{2} \sigma_{1}+\gamma_{*}\right)$ is a polynomial defining a reduced smooth irreducible curve C which intersects the line at infinity at ($m=\operatorname{deg} C$) distinct points. Let $E_{\text {in }}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{ker}\left(\lambda_{1} \sigma_{2}-\lambda_{2} \sigma_{1}+\gamma\right)$ and $E_{\text {out }}\left(\lambda_{1}, \lambda_{2}\right)=\operatorname{ker}\left(\lambda_{1} \sigma_{2}-\lambda_{2} \sigma_{1}+\gamma_{*}\right)$ be line bundles over C.

Theorem 5.1. (Ball-Vinnikov): Given any meromorphic bundle map $S: E_{\text {in }} \rightarrow E_{\text {out }}$ such that S acts as the identity operator at all points of C at infinity. Then there exist a unique (up to state space isomorphism) minimal vessel \mathcal{B} with the same determinantal representations and with $D=\tilde{D}=I$ such that $S_{\mathcal{B}}=S$.

The vessel $\mathcal{B}_{F}^{\text {Controller }}$

In order to solve the pole placement problem, we must analyze 2 different questions:

1. Determine what are the admissible feedbacks (if any)
2. Learn to control the joint spectrum $\operatorname{Spec}\left(A_{1}+\tilde{B} \sigma_{1} F, A_{2}+\tilde{B} \sigma_{2} F\right)$.

The answer to both of these problems is given by the following object: Given a vessel \mathcal{B} and any operator (not necessarily admissible) $F: \mathcal{H} \rightarrow \mathcal{E}$, define a collection

$$
\mathcal{B}_{F}^{\text {Controller }}=\left(A_{1}, A_{2}, \tilde{B},-F, I, I, \sigma_{1}, \sigma_{2}, \gamma, \sigma_{1}, \sigma_{2}, \gamma\right)
$$

The vessel $\mathcal{B}_{F}^{\text {Controller }}$

Theorem 5.2. An operator F is an admissible feedback for \mathcal{B} if and only if $\mathcal{B}_{F}^{\text {Controller }}$ is a vessel. Moreover, if F is admissible and S is the transfer function of $\mathcal{B}_{F}^{\text {Controller }}$ then Poles $(S)=\operatorname{Poles}(\mathcal{B})$, and
$\operatorname{Zeros}(S)=\operatorname{Poles}\left(\mathcal{B}_{F}^{\text {Closed loop }}\right)$.

Proof.

The first assertion is an easy verification. It is also immediate that $\operatorname{Poles}(S)=\operatorname{Poles}(\mathcal{B})$. For the last claim, define the collection

$$
\mathcal{V}=\left(A_{1}+\tilde{B} \sigma_{1} F, A_{2}+\tilde{B} \sigma_{2} F, \tilde{B},-F, I, I, \sigma_{1}, \sigma_{2}, \gamma, \sigma_{1}, \sigma_{2}, \gamma\right)
$$

One may verify that this is a vessel. It is clear that $\operatorname{Poles}(\mathcal{V})=\operatorname{Poles}\left(\mathcal{B}_{F}^{\text {Closed loop }}\right)$. To finish the proof, one checks that $S_{\mathcal{V}} \cdot S=I$. In other words, \mathcal{V} is the inverse of the vessel $\mathcal{B}_{F}^{\text {Controller }}$, so that $\operatorname{Zeros}(S)=\operatorname{Poles}(\mathcal{V})$. In general, for a vessel \mathcal{B} with D invertible, there always exist an inverse vessel \mathcal{B}^{-1} with $S_{\mathcal{B}^{-1}}=\left(S_{\mathcal{B}}\right)^{-1}$.

The main theorem

Theorem 5.3. Given an effective divisor $D \in \operatorname{Div}(C)$, there exist an admissible feedback F such that poles $\left(\mathcal{B}_{F}^{\text {Closed loop }}\right)=D$ if and only if there exist a rational function $f \in K(C)$ such that for every $x \in C \cap L_{\infty}, f(x)=1$, such that $\operatorname{Poles}(f)=\operatorname{Poles}(\mathcal{B})$ and $\operatorname{Zeros}(f)=D$..

If such an F exists, $\mathcal{B}_{F}^{\text {Controller }}$ is a vessel with transfer function S. But $S: E_{\mathrm{in}} \rightarrow E_{\mathrm{in}}$, has all the required properties, and giving a function from a line bundle to itself is the same as giving a rational function on the curve. For the converse, suppose such an f is given. We may define a function $S: E_{\text {in }} \rightarrow E_{\text {in }}$ by $S(p, v)=f(p) \cdot v$. Such an S satisfies all the conditions of the Ball-Vinnikov realization theorem, so that there exist a vessel \mathcal{V} with transfer function equal to S.

The main theorem

It is now possible to show (using state-space isomorphism, minimality, etc...) that \mathcal{V} is of the form $\mathcal{V}=\mathcal{B}_{-C(\mathcal{V})}^{\text {Conter }}$, so that the operator $F=-C(\mathcal{V})$ is the required feedback.

Genus 0 case

We now show how to obtain information about pole placement in specific examples.

Example 6.1. Suppose \mathcal{B} is a vessel, such that the discriminant curve C is of genus 0 . Let $m=\operatorname{deg} C$. One has $m=1$ or $m=2$. Suppose $m=1$. Then C is actually a line. Hence, C intersects the line at infinity at precisely one point. In this case, the interpolation problem of finding a rational function which is 1 at infinity, having prescribed zeros and poles may always be solved, so we can place poles one the curve arbitrarily. This is not surprising, as vessels with $m=0$ are the same as classical linear systems, so our theorem is indeed a generalization of the classical pole placement.

Genus 0 case

Example 6.2. Suppose now $g=0$ and $m=2$. In this case, C is a conic, and it intersects the line at infinity at 2 distinct points. In this case, one can always place exactly $n-1$ poles, the last pole is then determined from the other $n-1$.

General conclusions

Recall that $L(D)=\{f \in K(C):(f)+D \geq 0\}$, and that $l(D)=\operatorname{dim} L(D)$. Let $P=\operatorname{Spec}\left(A_{1}, A_{2}\right)$.

Corollary 6.3. Let $l=l\left(P-D_{\infty}\right)$. If $l=0$ then no poles could be placed. If $l \geq 1$, then generically, one may place exactly l poles. Moreover, generically, once the l poles were chosen, the rest $n-l$ poles of the system are determined uniquely.

General conclusions

Corollary 6.4. Let $m=\operatorname{deg} C, n=\operatorname{dim} \mathcal{H}$. If $n<m$, no poles could be placed. If $n-m>2 g-2$, then $l=n-m+1-g$, so that $n-m+1-g$ poles could be placed generically.

Elliptic curves

Example 6.5. As a final example, suppose C is an elliptic curve. In this case, $g=1$, and $m=3$. For elliptic curves, the Riemann-Roch theorem implies that $l(D)=\operatorname{deg}(D)$ for all D with $\operatorname{deg}(D) \geq 1$. Hence, if $n \geq 4$, one can always place poles, and, generically, one can place $n-3$ poles. If $n \leq 2$, no place could be placed. The case where $n=3$ is a special case. In this case, the possibility of placing a single pole depends on the points of p. The theory of special divisors on elliptic curves then shows:

Theorem 6.6. If $g=1$ and $n=3$, then $l>0$ (so that one can place poles) if and only if for $p=p_{1}+p_{2}+p_{3}$, the points p_{1}, p_{2} and p_{3} lie on one line. (In terms of the group of points of the elliptic curve, this just means that $p_{1}+p_{2}+p_{3}=0$).

Stability

Let \mathcal{B} be a vessel, and suppose that the compact Riemann surface associated to its discriminant curve X, is a real Riemann surface of dividing type. Given the above theorem about pole placement, the question of stability may be reformulated as follows:

Problem 6.7. Let P be an effective divisor on X. Does there exist a meromorphic function $f: X \rightarrow \mathbb{C}$ such that $f(x)=1$ for all $x \in X \cap L_{\infty}$, $(f)_{\infty}=P$, and $(f)_{0} \subseteq X_{+}$?

