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The definition of operator vessels

The definition of operator vessels

We start with an Overdetermined 2D continuous-time time-invariant linear
i/s/o system 2

£ (11, 12) = Aix(th, 1) + Bau(ty, 1)
5 (11, 12) = Aox(t1,12) + Bau(t, 1)
y(t1,12) = Cx(t1,12) + Du(ty, 1)
u(t), ) € € - input space. x(1,12) € H - state space. y(t1, ) € &, - output

space. All spaces are finite dimensional over the complex numbers.
Al,AzZH—VH.B],BZ:g—>H.C2H—>E*.D25—>5*.
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The definition of operator vessels

The definition of operator vessels - Al

Assuming x is smooth, we have 861 ‘?j = 8? ?x , so that from X, we have:
Ox Ou Ox Ou
A B =A—+8B
17— on + b1 on 2 on + By on

Replacmg - with the terms in X, we obtain

0
= Ay[A1x + Bju] + le

Ou
A1[Ax + Bou| + By — Br
1

ot (1.1)

Setting u = 0, we see that we must have AjA; = AA;. Hence, we require our
systems to satisfy this compatibility condition:

(A1) AA; = AsA,
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The definition of operator vessels

The definition of operator vessels - A2

Under the assumption (A1), (1.1) becomes

Ou Ou
Brg, — Big, T (AaB1 — AiB2)u =0 (1.2)

We now choose an auxiliary Hilbert space £ and a factorization
B2 = BO’Q B] = BO’] AzB] —A]Bz = B")/ (13)

where o B B B
B:E—-H o01:E2E 0p:E—E v:E=E

In terms of this factorization, (1.3) becomes our second compatibility
condition:

(A2) AzBJ] —A1B0'2 = B’y
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The definition of operator vessels

The definition of operator vessels

Using this factorization, our equation (1.2) becomes

B[O’zaitl 8[2

A sufficient condition for this to hold is

3}
— 01— +7Ju(t;, ) =0

o2 o1 on
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The definition of operator vessels

The definition of operator vessels

Further analysis of this system leads us to the notion of a Livsic-Kravitsky
commutative operator vessel:
An operator vessel B is a collection of operators and spaces

B = (A17A27B7 C7D7D7 7g1,02,7, 01*702*77*;7{7575*7575*)

satisfying:

) AlAy = AdAy

) AzBJ] —AlBO'2 :B’y
(A3) UZ*CAl —O’l*CA2+’Y*CZ 0
A4) 01:D = Doy 02.D = Do,
YD = l~)'y + 01+CBoy — 02,CBo
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The definition of operator vessels

The definition of operator vessels

we also require the functions u to satisfy the following PDEs

0
[02871 kil +Y]u(ti, ) =0

which implies that y satisfies

0 0
[0-2*8711 - 0’1*871‘2 +'Y*]y(t17t2) =0

The system of equations associated to a vessel 5 is
g%(ll,lz) = Ai1x(t1, 1) + Bou(t, 1)

%};(tl, t2) = A2X(l‘1, fz) + BO’zu(ll, 1‘2)

y(t1, ) = Cx(t1,12) + Du(ty, 1)
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Transfer functions of operator vessels

Transfer functions of operator vessels

We construct the transfer function of a vessel 13 using frequency domain
analysis. Suppose

”(t17t2) — e>\1t1+)\212u0
x(tl,tg) — e)\1l1+/\212xO
and
At ot
y(t1, 1) = eMnly,

for some ug € £, xo € H and yg € E&,.
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Transfer functions of operator vessels

Transfer functions of operator vessels

From the PDE satisfied by the input function u, we obtain an algebraic
equation
[)\10'2 — )\20’1 + ’)/]I/l() =0

and similarly, for the output
[A1o2 — Mao1s +1]yo = 0
Plugging u, x and y into X, we obtain the following system of equations

Aixo = A1xo + Boug
Aaxo = Aoxxg + Boauyg
yo = Cxo + Duy
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Transfer functions of operator vessels

Transfer functions of operator vessels

To solve this system (i.e, to find yg in terms of 1), we multiply the first
equation by & € C, the second by &, € C. Adding the resulting equations, we
obtain

(G A1 + E20)x0 = (§1A1 + &A2)x0 + B(E101 + &02)up

Recall that the joint spectrum of a pair of commuting square matrices
A, B € M,(C), denoted by Spec(A, B), is the set of pairs (A, i) such that
30 # v € C*, with Av = Av and Bv = uv.

Lemma 2.1. Given A, B € M,(C), such that AB = BA, there exist {;,& € C
such that §1A + & B is invertible, if and only if (0,0) ¢ Spec(A, B).

Hence, assuming (A1, A2) ¢ Spec(A1,Az), we may choose &1, & such that
E1( AT —Ay) + &(Aal — Ay) is invertible, so that

x0 = (E1(M — Ar) + & (Ml — A2))7'B(&101 + £202)ug.
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Transfer functions of operator vessels

Transfer functions of operator vessels

This implies that

yo = (D + C(&1(MI — A1) + & (Mol — A2)) ' B(£101 + £202) )up. Hence, the
transfer function of a vessel B is given by

SB(A1, A2) =D+ C(&1(MI — Ay) + & (Ml — A7) 'B(&01 + &07)

Note that for a 1y with u admissible input signal, this is independent of £, &.
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Transfer functions of operator vessels

Controllability, observability and minimal vessels

Let C denote the controllable subspace, i.e the space of all vectors 2 € H such
that there exist an admissible input u for which the state function x satisfies,
x(0,0) = 0, and x(t1,12) = h for some (1,1,) € R%. A vessel B is called
controllable if C = H.

Similarly, let O denote the unobservable subspace, i.e the subspace of all
vectors i € H such that the unique solution (u, x,y) of the system of
equations associated to the vessel, with x(0,0) = h,and u =0 hasy = 0. A
vessel B is called observable if O+ = 0.

A vessel is called minimal if it is both controllable and observable. In the
sequel, all vessels are assumed to be minimal.
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The discriminant curve of a vessel

The discriminant curve of a vessel

Assume now that dim & = dim &, and dim &, = dim &,. We have seen that a
frequency function u satisfies the compatibility PDE if and only if

(AMo2 — Aoy + y)up = 0. We define Ej (A1, \2) = ker(A\joy — Aoy +7)
and E,u (A1, \2) = ker(A 102« — A2014 + 74) and also

Pin(A1, A2) = det(Ajo2 — Mo + ), Pour (A1, A2) = det(Ajo2x — Aaois + 74).

Theorem 3.1. (Livsic-Kravitsky): pin = Apour for some X € C*.
Let p = pin = Pour-

Theorem 3.2. (Livsic-Kravitsky): The generalized Cayley-Hamilton theorem
forvessels: p(A;,Az) = 0.

Let Co = {(A1, \2) € C?: p(A1, X2) = 0}. The curve Cy (and the associated
projective plane curve C) is called the discriminant curve of the vessel B.

Corollary 3.3. Spec(A1,A;) C C.
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The discriminant curve of a vessel

The discriminant curve of a vessel
The input and output bundles

In all that follows we make the following assumptions on the curve C: C is
smooth, reduced, and irreducible of degree m, and intersects the line at
infinity at m distinct points.

Theorem 3.4. Foreach A = (A1, \2) € C,
dim Ein<)\17 Az) = dimE(,u,()\l s )\2) = 1.

It follows that Ej, and E,,; are actually line bundles over the curve C.
Furthermore, our construction of the transfer function, shows that Sp is
actually a bundle map. In summary, we have:

Theorem 3.5. For a vessel B, the transfer function Sg : E;;, — Eyyy is a
meromorphic bundle map, with poles(S) = Spec(A,Ay).
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State feedback and the pole placement problem

State feedback

We now formulate state feedback for vessels. Let 5 be a vessel, and suppose
that F' : H — £. We may form a new collection

BElosed 0P — (A 4 Bo\F,Ay+BoyF,B,C+DF,D,D,01,02,7,01s, 025, 7+)

A small calculation shows that

Proposition 4.1. The collection Bgl”sed loop

F satisfies the following 2 equations:

is an operator vessel if and only if

0'2FA1 — O'1FA2 + ’}/F =0
01FBoy — 02FBo; =0

Such an F is called an admissible feedback for .
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State feedback and the pole placement problem

The pole placement problem

We may now formulate the pole placement problem for operator vessels:

Problem 4.2. Given a vessel B, find an admissible feedback F such that the

joint spectrum Spec(A; + BoF,Ay + BoyF) (which is equal to

Poles(S zcuseaon ) ) is a prescribed effective divisor on the discriminant curve
F

C.

Recall that an effective divisor on a curve C is a finite formal sum
D=3 ccnp-pwithn, € N.
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The solution

The factorization

As might be expected, it turns out that the effect of state feedback takes place
in the input space. In fact, for every controllable vessel I3 and any admissible
feedback F, the transfer function of the closed loop vessel Bglosed 100P 2 ctors

5! T
Ein » Eip — Eout
where T is the transfer function of the open loop vessel, and S is the transfer

function of a vessel BSOToller whose construction will be explained in the
sequel.
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The solution

The Ball-Vinnikov realization theorem

Suppose g1, 02,7, v« € M,(C) are given matrices, and suppose that
det(Ajop — Ao + ) = det(A\jo2 — Ao + 74) is a polynomial defining a
reduced smooth irreducible curve C which intersects the line at infinity at
(m = deg C) distinct points. Let E;, (A1, A\2) = ker(Ajo2 — 201 + ) and
Eout(A1, A2) = ker(A\jo2 — Ao + 74) be line bundles over C.

Theorem 5.1. (Ball-Vinnikov): Given any meromorphic bundle map

S : Ej, — Eoyt such that S acts as the identity operator at all points of C at
infinity. Then there exist a unique (up to state space isomorphism) minimal
vessel B with the same determinantal representations and with D = D = I
such that Sg = S.
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The solution

Controller
The vessel By

In order to solve the pole placement problem, we must analyze 2 different
questions:

1. Determine what are the admissible feedbacks (if any)
2. Learn to control the joint spectrum Spec(A; + BoF JAy + BooF ).

The answer to both of these problems is given by the following object:
Given a vessel B and any operator (not necessarily admissible) F : H — &,
define a collection

Bgentroller — (A Ay, B, —F,I,1,01,02,7,01,02,7)
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The solution

Controller
The vessel By

Theorem 5.2. An operator F is an admissible feedback for B if and only if
Bg""t’ oller i g vessel. Moreover, if F is admissible and S is the transfer
function of BEmoler then Poles(S) = Poles(B), and

Zeros(S) = Poles(Bglosed foop

Proof.

The first assertion is an easy verification. It is also immediate that
Poles(S) = Poles(B). For the last claim, define the collection

V= (A] —i—BU]F,Az—i-BUzF,B, —F,I,I,O’l,O'Q,”)/,U],O'Q,”y)

One may verify that this is a vessel. It is clear that

Poles(V) = Poles(B5"**!°°P)_ To finish the proof, one checks that

Sy - § = I. In other words, V is the inverse of the vessel B}(,;"“t“’“er, so that
Zeros(S) = Poles(V). In general, for a vessel 5 with D invertible, there
always exist an inverse vessel B! with Sg-1 = (Sg) L. O
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The solution

The main theorem

Theorem 5.3. Given an effective divisor D € Div(C), there exist an
admissible feedback F such that poles(Bglosed loop ) = D if and only if there
exist a rational function f € K(C) such that for every x € C N Ly, f(x) = 1,
such that Poles(f) = Poles(B) and Zeros(f) = D..

If such an F exists, Bg"“t“’“er is a vessel with transfer function S. But
S : Ej, — Ejy, has all the required properties, and giving a function from a
line bundle to itself is the same as giving a rational function on the curve.

For the converse, suppose such an f is given. We may define a function

S : Eipy — Ein by S(p,v) =f(p) - v. Such an S satisfies all the conditions of the
Ball-Vinnikov realization theorem, so that there exist a vessel )V with transfer

function equal to S.
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The solution

The main theorem

It is now possible to show (using state-space isomorphism, minimality, etc...)
that V) is of the form V = BS"C“(%S‘)’“”, so that the operator F = —C(V) is the
required feedback. U
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Conclusions

Genus 0 case

We now show how to obtain information about pole placement in specific
examples.

Example 6.1. Suppose B is a vessel, such that the discriminant curve C is of
genus 0. Let m = deg C. One has m = 1 or m = 2. Suppose m = 1. Then C is
actually a line. Hence, C intersects the line at infinity at precisely one point.
In this case, the interpolation problem of finding a rational function which is 1
at infinity, having prescribed zeros and poles may always be solved, so we can
place poles one the curve arbitrarily. This is not surprising, as vessels with

m = ( are the same as classical linear systems, so our theorem is indeed a
generalization of the classical pole placement.
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Conclusions

Genus 0 case

Example 6.2. Suppose now g = 0 and m = 2. In this case, C is a conic, and
it intersects the line at infinity at 2 distinct points. In this case, one can always

place exactly n — 1 poles, the last pole is then determined from the other
n—1.
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Conclusions

General conclusions

Recall that L(D) = {f € K(C) : (f) + D > 0}, and that /(D) = dim L(D). Let
P = Spec(A1,Az).

Corollary 6.3. Letl = I(P — D). If I = 0 then no poles could be placed. If
[ > 1, then generically, one may place exactly | poles. Moreover, generically,

once the [ poles were chosen, the rest n — [ poles of the system are determined
uniquely.
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Conclusions

General conclusions

Corollary 6.4. Let m = degC, n = dim'H. If n < m, no poles could be
placed. Ifn —m >2g —2, thenl=n—m+1—g sothatn —m+1—g
poles could be placed generically.
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Conclusions

Elliptic curves

Example 6.5. As a final example, suppose C is an elliptic curve. In this case,
g = 1, and m = 3. For elliptic curves, the Riemann-Roch theorem implies
that /(D) = deg(D) for all D with deg(D) > 1. Hence, if n > 4, one can
always place poles, and, generically, one can place n — 3 poles. If n < 2, no
place could be placed. The case where n = 3 is a special case. In this case, the
possibility of placing a single pole depends on the points of p. The theory of
special divisors on elliptic curves then shows:

Theorem 6.6. If g = 1 andn = 3, then [ > 0 (so that one can place poles) if
and only if for p = p1 + p>» + p3, the points py, p> and p3 lie on one line. (In
terms of the group of points of the elliptic curve, this just means that
p1+p2+p3=0).
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Conclusions

Stability

Let B be a vessel, and suppose that the compact Riemann surface associated
to its discriminant curve X, is a real Riemann surface of dividing type. Given
the above theorem about pole placement, the question of stability may be
reformulated as follows:

Problem 6.7. Let P be an effective divisor on X. Does there exist a
meromorphic function f : X — C such that f(x) = 1 forall x € X N Lo,
(f)oo = P, and (f)o C X2
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